The system shown in the figure is in equilibrium at rest and the spring and string are massless. Now the string is cut. The acceleration of masses 2m and m just after the string is cut will be:



- $\triangle$   $\frac{3g}{2}$  upwards, g downwards
- $\frac{g}{2}$  upwards, g downwards
- g upwards, 2g downwards
- 2g upwards, g downwards

The correct option is  $\mathbf{B} \frac{g}{2}$  upwards, g downwards Initially, when the system is in equilibrium: FBD of system:



By applying equilibrium condition on system in vertical direction

$$\Rightarrow$$
 F<sub>Spring</sub> = 3mg

Now, after the string is cut, T = 0 i.e tension in string becomes zero instantaneously, while spring force will act at its initial value  $F_{Spring}$ , due to inertia of spring.

2

FBD of individual blocks after string is cut, represented below:



Acceleration of block of mass m

$$a_m = \frac{mg}{m}$$

 $a_m = g$  (Downwards)

Acceleration of block of mass 2m

$$a_{2m} = \frac{F_{Spring} - 2mg}{2m} = \frac{mg}{2m}$$

$$\therefore a_{2m} = \frac{9}{2}$$
 (Upwards)